Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82.420
Filtrar
1.
PeerJ ; 12: e17176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560479

RESUMEN

The effects of nitrogen application or earthworms on soil respiration in the Huang-Huai-Hai Plain of China have received increasing attention. However, the response of soil carbon dioxide (CO2) emission to nitrogen application and earthworm addition is still unclear. A field experiment with nitrogen application frequency and earthworm addition was conducted in the Huang-Huai-Hai Plain. Results showed nitrogen application frequency had a significant effect on soil respiration, but neither earthworms nor their interaction with nitrogen application frequency were significant. Low-frequency nitrogen application (NL) significantly increased soil respiration by 25%, while high-frequency nitrogen application (NH), earthworm addition (E), earthworm and high-frequency nitrogen application (E*NH), and earthworm and low-frequency nitrogen application (E*NL) also increased soil respiration by 21%, 21%, 12%, and 11%, respectively. The main reason for the rise in soil respiration was alterations in the bacterial richness and keystone taxa (Myxococcales). The NH resulted in higher soil nitrogen levels compared to NL, but NL had the highest bacterial richness. The abundance of Corynebacteriales and Gammaproteobacteria were positively connected with the CO2 emissions, while Myxococcales, Thermoleophilia, and Verrucomicrobia were negatively correlated. Our findings indicate the ecological importance of bacterial communities in regulating the carbon cycle in the Huang-Huai-Hai Plain.


Asunto(s)
Myxococcales , Oligoquetos , Animales , Dióxido de Carbono , Soja , Nitrógeno/farmacología , Suelo , Productos Agrícolas
2.
Glob Chang Biol ; 30(4): e17264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556774

RESUMEN

Nutrient enrichment often alters the biomass and species composition of plant communities, but the extent to which these changes are reversible after the cessation of nutrient addition is not well-understood. Our 22-year experiment (15 years for nutrient addition and 7 years for recovery), conducted in an alpine meadow, showed that soil nitrogen concentration and pH recovered rapidly after cessation of nutrient addition. However, this was not accompanied by a full recovery of plant community composition. An incomplete recovery in plant diversity and a directional shift in species composition from grass dominance to forb dominance were observed 7 years after the nutrient addition ended. Strikingy, the historically dominant sedges with low germination rate and slow growth rate and nitrogen-fixing legumes with low germination rate were unable to re-establish after nutrient addition ceased. By contrast, rapid recovery of aboveground biomass was observed after nutrient cessation as the increase in forb biomass only partially compensated for the decline in grass biomass. These results indicate that anthropogenic nutrient input can have long-lasting effects on the structure, but not the soil chemistry and plant biomass, of grassland communities, and that the recovery of soil chemical properties and plant biomass does not necessarily guarantee the restoration of plant community structure. These findings have important implications for the management and recovery of grassland communities, many of which are experiencing alterations in resource input.


Asunto(s)
Pradera , Plantas , Biomasa , Poaceae , Suelo/química , Nitrógeno/análisis , Nutrientes
3.
Mikrochim Acta ; 191(5): 231, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565795

RESUMEN

Blood stasis syndrome (BSS) has persistent health risks; however, its pathogenesis remains elusive. This obscurity may result in missed opportunities for early intervention, increased susceptibility to chronic diseases, and reduced accuracy and efficacy of treatments. Metabolomics, employing the matrix-assisted laser desorption/ionization (MALDI) strategy, presents distinct advantages in biomarker discovery and unraveling molecular mechanisms. Nonetheless, the challenge is to develop efficient matrices for high-sensitivity and high-throughput analysis of diverse potential biomarkers in complex biosamples. This work utilized nitrogen-doped porous transition metal carbides and nitrides (NP-MXene) as a MALDI matrix to delve into the molecular mechanisms underlying BSS pathogenesis. Structural optimization yielded heightened peak sensitivity (by 1.49-fold) and increased peak numbers (by 1.16-fold) in clinical biosamples. Validation with animal models and clinical serum biosamples revealed significant differences in metabolic fingerprints between BSS and control groups, achieving an overall diagnostic efficacy of 0.905 (95% CI, 0.76-0.979). Prostaglandin F2α was identified as a potential biomarker (diagnostics efficiency of 0.711, specificity = 0.7, sensitivity = 0.6), and pathway enrichment analysis disclosed disruptions in arachidonic acid metabolism in BSS. This innovative approach not only advances comprehension of BSS pathogenesis, but also provides valuable insights for personalized treatment and diagnostic precision.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Dinoprost , Retroalimentación , Nitrógeno , Porosidad , Compuestos Orgánicos , Biomarcadores
4.
An Acad Bras Cienc ; 96(1): e20230745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597492

RESUMEN

Phenoselenazines are nitrogen and selenium-based heterocyclic compounds that have important biological activities. However, their preparation methods are scarce and difficult to handle. The synthesis of a phenoselenazine from a simple and robust CuO nanoparticle catalyzed methodology, using bis-aniline-diselenide and 1,2-dihalobenzenes under microwave irradiation. Also, the double-cross-coupling reaction mechanism for C-Se and C-N bond formation, including the observation of a reaction intermediate by mass spectrometry have been studied.


Asunto(s)
Selenio , Nitrógeno/química
5.
Environ Geochem Health ; 46(5): 173, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592592

RESUMEN

Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.


Asunto(s)
Agua Subterránea , Nitratos , Niño , Femenino , Lactante , Masculino , Humanos , Teorema de Bayes , Ecosistema , Fertilizantes , Estiércol , Aguas del Alcantarillado , China , Isótopos , Nitrógeno , Suelo
6.
Sci Rep ; 14(1): 8114, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582951

RESUMEN

The COVID-19 pandemic has been a life threatening and spreads wildly with physical human contact. Physical distancing is recommended by health experts to prevent the spread; thus, agronomic research has to be designed in conformity to this preventive standard during the pandemic. Consequently, this study was designed to evaluate the reliability of using digital tools in nutrient management research amid the COVID-19 pandemic in northern Nigeria. Fifty extension agents (EAs) were selected across 15 LGAs of Kaduna and Kano states. The EAs were trained on how to generate fertilizer recommendation using an android mobile phone-based nutrient expert (NE), to measure farmers' field sizes using UTM Area measure mobile phone app, and open data kit to record, submit and aggregate data during the exercise. Each EA covered 50 farms, where two nutrient management practices-one determined by the farmers: farmer fertilizer practice (FFP), and the other generated using the NE were evaluated. Results show that around 90% of the farmers have an average field size of 1.13 ha. All selected farmers used improved maize varieties for planting, among which 21% been able to use the exact recommended or lower seed rate. Use of inorganic fertilizer was 33% higher than the average recommended NE rate, while average yield of the NE fields was 48% higher than for the FFP. The results of this study indicate that yield can be improved with site-specific nutrient management (SSNM) extension approach. The SSNM using digital tools as the NE seem promising and befits to agronomic research in northern Nigeria amid the COVID-19 pandemic.


Asunto(s)
COVID-19 , Zea mays , Humanos , Pandemias , Nigeria/epidemiología , Fertilizantes , Tecnología Digital , Reproducibilidad de los Resultados , Nitrógeno/análisis , COVID-19/epidemiología , COVID-19/prevención & control , Nutrientes
7.
J Agric Food Chem ; 72(14): 7794-7806, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561246

RESUMEN

To investigate the effects of fertilization methods and types on wheat rhizosphere microorganisms, macroelement (N, K) and microelement (Zn) fertilizers were applied on wheat by foliar spraying (FS) and root irrigation (RI) methods in a field experiment. The results indicated that fertilization methods and types can have significant impacts on the diversity and structure of rhizospheric microorganisms in wheat. The application method produced more significant effects than the fertilizer type. RI-N played a more important role in improving the wheat yield and quality and affected the changes in some nitrogen-fixing bacterial communities. Finally, eight strains of bacteria belonging to Pseudomonas azotoformans and P. cedrina showed positive effects on the growth of wheat seedlings. Overall, our study provides a better understanding of the dynamics of wheat rhizosphere microbial communities and their relation to fertilization, yield, and quality, showing that plant growth-promoting rhizobacteria with nitrogen fixing may be a potential approach for more sustainable agriculture production.


Asunto(s)
Microbiota , Triticum , Rizosfera , Nitrógeno/análisis , Fertilizantes/análisis , Fertilización , Suelo/química , Microbiología del Suelo
8.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587649

RESUMEN

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Asunto(s)
Berberina , Berberina/análogos & derivados , Animales , Berberina/farmacología , Ureasa , Amoníaco , Cloruros , Rumen , Inhibidores Enzimáticos/farmacología , Nitrógeno , Rumiantes
9.
Plant Mol Biol ; 114(2): 35, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587705

RESUMEN

Fixing atmospheric nitrogen for use as fertilizer is a crucial process in promoting plant growth and enhancing crop yields in agricultural production. Currently, the chemical production of nitrogen fertilizer from atmospheric N2 relies on the energy-intensive Haber-Bosch process. Therefore, developing a low-cost and easily applicable method for fixing nitrogen from the air would provide a beneficial alternative. In this study, we tested the utilization of dinitrogen pentoxide (N2O5) gas, generated from oxygen and nitrogen present in ambient air with the help of a portable plasma device, as a nitrogen source for the model plant Arabidopsis thaliana. Nitrogen-deficient plants supplied with medium treated with N2O5, were able to overcome nitrogen deficiency, similar to those provided with medium containing a conventional nitrogen source. However, prolonged direct exposure of plants to N2O5 gas adversely affected their growth. Short-time exposure of plants to N2O5 gas mitigated its toxicity and was able to support growth. Moreover, when the exposure of N2O5 and the contact with plants were physically separated, plants cultured under nitrogen deficiency were able to grow. This study shows that N2O5 gas generated from atmospheric nitrogen can be used as an effective nutrient for plants, indicating its potential to serve as an alternative nitrogen fertilization method for promoting plant growth.


Asunto(s)
Arabidopsis , Gases , Nitrógeno , Fertilizantes , Oxígeno , Agricultura
10.
Sci Rep ; 14(1): 8259, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589560

RESUMEN

Microalgae are widely exploited for numerous biotechnology applications, including biofuels. In this context, Chlamydomonas debaryana and Chlorococcum sp. were isolated from Fez freshwater (Morocco), and their growth and lipid and carbohydrate production were assessed at different concentrations of NaCl, NaNO3, and K2HPO4. The results indicate a small positive variation in growth parameters linked to nutrient enrichment, with no considerable variation in carbohydrate and lipid levels in both algae. Moreover, a negative variation was recorded at increased salinity and nutrient limitation, accompanied by lipid and carbohydrate accumulation. Chlorococcum sp. showed better adaptation to salt stress below 200 mM NaCl. Furthermore, its growth and biomass productivity were strongly reduced by nitrogen depletion, and its lipid production reached 47.64% DW at 3.52 mM NaNO3. As for Chlamydomonas debaryana, a substantial reduction in growth was induced by nutrient depletion, a maximal carbohydrate level was produced at less than 8.82 mM NaNO3 (40.59% DW). The effect of phosphorus was less significant. However, a concentration of 0.115 mM K2HPO4 increased lipid and carbohydrate content without compromising biomass productivity. The results suggest that growing the two Chlorophyceae under these conditions seems interesting for biofuel production, but the loss of biomass requires a more efficient strategy to maximize lipid and carbohydrate accumulation without loss of productivity.


Asunto(s)
Chlorophyceae , Microalgas , Fósforo , Lípidos/química , Salinidad , Nitrógeno , Marruecos , Cloruro de Sodio , Carbohidratos , Agua Dulce , Biomasa , Biocombustibles
11.
J Phys Chem B ; 128(14): 3350-3359, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38564809

RESUMEN

Secondary coordination sphere (SCS) interactions have been shown to play important roles in tuning reduction potentials and electron transfer (ET) properties of the Type 1 copper proteins, but the precise roles of these interactions are not fully understood. In this work, we examined the influence of F114P, F114N, and N47S mutations in the SCS on the electronic structure of the T1 copper center in azurin (Az) by studying the hyperfine couplings of (i) histidine remote Nε nitrogens and (ii) the amide Np using the two-dimensional (2D) pulsed electron paramagnetic resonance (EPR) technique HYSCORE (hyperfine sublevel correlation) combined with quantum mechanics/molecular mechanics (QM/MM) and DLPNO-CCSD calculations. Our data show that some components of hyperfine tensor and isotropic coupling in N47SAz and F114PAz (but not F114NAz) deviate by up to ∼±20% from WTAz, indicating that these mutations significantly influence the spin density distribution between the CuII site and coordinating ligands. Furthermore, our calculations support the assignment of Np to the backbone amide of residue 47 (both in Asn and Ser variants). Since the spin density distributions play an important role in tuning the covalency of the Cu-Scys bond of Type 1 copper center that has been shown to be crucial in controlling the reduction potentials, this study provides additional insights into the electron spin factor in tuning the reduction potentials and ET properties.


Asunto(s)
Nativos Alasqueños , Azurina , Azurina/genética , Azurina/química , Cobre/química , Nitrógeno/química , Mutación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Amidas
12.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569319

RESUMEN

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Asunto(s)
Fabaceae , Gases de Efecto Invernadero , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Suelo , Metano/análisis , Nitrógeno/metabolismo , Dióxido de Carbono/análisis , Agricultura
13.
PLoS One ; 19(4): e0297464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598537

RESUMEN

Microalgae biomass is regarded as a promising feedstock for biodiesel production. The biomass lipid content and fatty acids composition are among the main selective criteria when screening microalgae strains for biodiesel production. In this study, three strains of Chlorella microalgae (C. kessleri, C. sorokiniana, C. vulgaris) were cultivated nutrient media with different nitrogen contents, and on a medium with the addition of dairy wastewater. Moreover, microalgae grown on dairy wastewater allowed the removal of azote and phosphorous. The removal efficiency of 90%, 53% and 95% of ammonium nitrogen, total nitrogen and phosphate ions, respectively, were reached. The efficiency of wastewater treatment from inorganic carbon was 55%, while the maximum growth of biomass was achieved. All four samples of microalgae had a similar fatty acid profile. Palmitic acid (C16:0) was the most abundant saturated fatty acid (SFA), and is suitable for the production of biodiesel. The main unsaturated fatty acids (UFA) present in the samples were oleic acid (C18:1 n9); linoleic acid (C18:2 n6) and alpha-linolenic acid (C18:3 n3), which belong to omega-9, omega-6, omega-3, respectively.


Asunto(s)
Chlorella vulgaris , Microalgas , Aguas Residuales , Biocombustibles/análisis , Ácidos Grasos , Nutrientes , Biomasa , Nitrógeno
14.
J Environ Manage ; 357: 120771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565035

RESUMEN

Nitrogen fertiliser in agriculture continues to be one of the largest contributors to water pollution driven by the global food demand. Consequently, policies designed to tackle nitrogen pollution tend to be focused on the farm level. Applying mitigation measures requires knowledge, local labour and financial investment to achieve desired goals. Influencing farming activity comes with challenges as policies result in economic losses. We propose Water Quality Trading (WQT) to minimize the cost of controlling water pollution and develop it for policy recommendations in the River Alde catchment in Suffolk. We apply WQT to three scenarios named Reference Pollution Target, Livestock Target Plan and Variation of Farming. Our findings demonstrate that WQT can reduce farmers nitrogen load by 8%, 7% and 18% respectively from the baseline of 6 mg/L. The scenario simulations show a net revenue increase of 6%, 5% and 18% respectively. Our study demonstrates the effectiveness of the WQT approach in reducing water pollution, promoting sustainable agriculture and meeting water management goals.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Ríos , Agricultura , Nitrógeno/análisis , Reino Unido
15.
Biosens Bioelectron ; 255: 116254, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569252

RESUMEN

Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 µM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.


Asunto(s)
Técnicas Biosensibles , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Amoníaco/química , Fijación del Nitrógeno , Nitrógeno/química
16.
J Environ Manage ; 357: 120775, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38569263

RESUMEN

The present study aimed to assess the efficiency of zeolite in mitigating the nitrogen (N) losses through ammonia (NH3) and nitrous oxide (N2O) emissions from pig slurry (PS) applied to Italian ryegrass (IRG)-maize fields under a crop rotation system and the consequent effect on nitrogen use efficiency (NUE) for forage production. PS was applied at rates of 150 and 200 kg N ha-1 for the IRG and maize growing seasons, respectively, with or without zeolite. Soil mineral N content and NH3 and N2O emissions were measured periodically throughout the year-round cultivation of IRG and maize. Forage yield and nutritional composition were also analyzed at the harvest time of each crop. The PS with/without zeolite application effects were interpreted by comparison with those obtained for the negative control (no-N fertilization). Soil ammonium (NH4+) content in the PS-applied plots sharply increased within the first week, then progressively decreased in both the IRG and maize growing seasons. Soil NH4+ contents in the zeolite-amended plots were higher compared to the treatment without zeolite except for the first 1 or 2 weeks after PS application when soil nitrate (NO3-) contents significantly decreased. The increase in soil NH4+ content as affected by zeolite application was more distinct in the maize growing season than in the IRG growing season. NH3 emission was predominant at the early 2 weeks after PS application. Zeolite application reduced the cumulative emission of NH3 from PS by 16.7% and 24.4% and that of N2O by 15.6% and 31.5% in the IRG growing and maize growing seasons, respectively. NUE for dry matter (DM) and total digestible nutrients (TDN) production significantly improved in annual yield basis of the IRG-maize cropping. Zeolite application in PS-applied field may represent effective management in mitigating N losses through odorous NH3 and greenhouse gas (N2O) emissions, thereby improving NUE forage production.


Asunto(s)
Lolium , Zeolitas , Animales , Porcinos , Nitrógeno , Zea mays , Suelo , Óxido Nitroso/análisis , Fertilizantes , Producción de Cultivos , Italia , Agricultura
17.
J Environ Manage ; 357: 120653, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574704

RESUMEN

In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Nitrógeno/análisis , Aguas del Alcantarillado/química , Bacterias/metabolismo , Contaminantes Ambientales/análisis
18.
Acta Vet Hung ; 72(1): 24-32, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38578702

RESUMEN

Feeding costs of farmed insects may be reduced by applying alternative nitrogen sources such as urea that can partly substitute true proteins. The aim of this study was to examine the effects of different nitrogen sources on body weight (BW) and survival rate (SR) of the Jamaican field cricket (JFC, Gryllus assimilis), the house cricket (HC, Acheta domesticus), yellow mealworm larvae (YM, Tenebrio molitor) and superworm larvae (SW, Zophobas morio). Crickets were either housed individually or in groups, and larvae were group-housed. Six isonitrogenous feeds composed of 3.52% nitrogen were designed for all four insect species using four independent replicates with micellar casein: urea proportions of 100-0%, 75-25%, 50-50%, 25-75%, 0-100% and 100% extracted soybean meal. All selected insect species were able to utilise urea. However, urea as the only nitrogen source resulted in low final BW. In the HC, the JFC, and the YM on nitrogen basis urea can replace 25% of micellar casein without having any negative effects on BW and SR in comparison to the 100% micellar casein group. In the SW, a 25% urea level did not have a significant effect on final BW, but SR decreased significantly.


Asunto(s)
Escarabajos , Gryllidae , Tenebrio , Animales , Caseínas/metabolismo , Insectos , Larva/metabolismo , Tenebrio/metabolismo , Peso Corporal , Nitrógeno , Suplementos Dietéticos
19.
J Environ Manage ; 357: 120765, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579467

RESUMEN

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Asunto(s)
Pradera , Suelo , Animales , Ovinos , Suelo/química , Carbono/análisis , Estaciones del Año , Nitrógeno/análisis , Plantas , China , Microbiología del Suelo
20.
J Environ Manage ; 357: 120843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588621

RESUMEN

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Asunto(s)
Óxido Ferrosoférrico , Nitritos , Nitritos/metabolismo , Transporte de Electrón , Anaerobiosis , Metano , Electrones , Desnitrificación , Oxidación-Reducción , Bacterias/metabolismo , Bacterias Anaerobias/metabolismo , Nitrógeno/metabolismo , Reactores Biológicos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...